Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Tetsuzo Ito* and Yoshinori Maeda

Department of Applied Chemistry, Faculty of Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan

Correspondence e-mail:
ito@chem.kanagawa-it.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{C})=0.012 \AA$
R factor $=0.029$
$w R$ factor $=0.028$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Linear-chain bis(μ-O, O^{\prime}-dimethyl dithiophosphato)lead(II)

The title compound, $\left[\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\right]$, has a twofold rotation axis passing through the Pb atom along the b axis. One of the two unique S atoms in a formula unit and its symmetryequivalent S atom bridge two adjacent Pb atoms, forming a polymeric linear chain along the c axis. The Pb atom is coordinated by six S atoms in a distorted octahedral arrangement. The six $\mathrm{Pb}-\mathrm{S}$ distances are in the range 2.860 (2)-3.145 (2) A, with an average of 3.01 (8) \AA.

Comment

As part of a study of metal xanthates and dialkyldithiophosphates (Ito, 2003, 2004), the crystal structure of the title compound, (I), has been determined. A displacement ellipsoid plot of (I) is shown in Fig. 1. Atom S2 and its symmetryequivalent S^{ii} atom (symmetry code as in Table 1) bridge two adjacent Pb atoms, forming a linear chain. Of the six S atoms coordinated to the Pb atom, four S atoms are approximately coplanar with the Pb atom. Mean-plane calculations (Ito, 1982) show that the maximum deviations from the plane defined by seven atoms, viz. $\mathrm{Pb}\left(\mathrm{S}_{2} \mathrm{P}\right)_{2}$, are 0.164 (2) and -0.164 (2) \AA for atoms S1 and $\mathrm{S}^{1 i}$, respectively. The plane normal is perpendicular to the b axis because of the twofold symmetry along the b axis.

(I)

The distorted octahedral coordination around the Pb atom and the structure of the linear chain in (I) are very similar to those in a diisopropyl analogue, $\operatorname{bis}\left(O, O^{\prime}\right.$-diisopropyldithiophosphato)lead(II), (II) (Lawton \& Kokotailo, 1972), with $\mathrm{Pb}-\mathrm{S}$ distances ranging from 2.761 (7) to 3.232 (10) \AA. Those authors explained the abnormally large $\mathrm{S} 2-\mathrm{Pb}-\mathrm{S} 4$ angle of 152.3 (1) ${ }^{\circ}$ in (II), which corresponds to the $\mathrm{S} 2-\mathrm{Pb}-\mathrm{S} 2^{\mathrm{ii}}$ angle of $144.33(7)^{\circ}$ in (I), by the existence of a stereochemically active lone pair of electrons oriented in a direction which approximately bisects the large $\mathrm{S} 2-\mathrm{Pb}-\mathrm{S} 4$ angle. According to this interpretation, the coordination around the Pb atom is a distorted pentagonal bipyramid in which the lone pair

Figure 1
A view of part of the crystal structure of (I), showing 50% probability displacement ellipsoids. Atoms Pb^{i} and $\mathrm{Pb}^{\text {iii }}$ are related by a unit translation along the c axis.Symmetry codes as in Table 1.
occupies an equatorial position. On the other hand, in a diethyl analogue, $\operatorname{bis}\left(O, O^{\prime}\right.$-diethyldithiophosphato)lead(II), (III) (Ito, 1972), the sulfur coordination around the Pb atom is distorted tetragonal pyramidal, with $\mathrm{Pb}-\mathrm{S}$ distances ranging from 2.754 (6) to 3.022 (6) A. Above the apex Pb atom, two S atoms of the adjacent unit approach with contact $\mathrm{Pb} \cdots \mathrm{S}$ distances of 3.469 (6) and 3.478 (6) \AA. Comparison of the structures (I), (II) and (III) suggests that the differences in the sulfur coordination around the Pb atoms in these compounds probably arise from the packing characteristics of dialkyl groups in the crystalline state.

Experimental

Potassium dimethyldithiophosphate (6.0 g) and lead nitrate (5.3 g) were each dissolved in pure water (20 ml). A powder of (I) was precipitated by combining the two solutions. Recrystallization from an acetone solution at 273 K gave colourless prismatic crystals of (I).

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\right]$
$M_{r}=521.56$
Orthorhombic, $P b c n$
$a=17.738$ (3) £
$b=9.218$ (2) \AA
$c=9.216(1) \AA$ A
$V=1506.9$ (4) \AA^{3}
$Z=4$
$D_{x}=2.299 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=2.292 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Rigaku AFC-5S diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.146, T_{\text {max }}=0.238$
1834 measured reflections 1727 independent reflections 1005 reflections with $I>3 \sigma(I)$

[^0]
Refinement

Refinement on $F \quad \mathrm{H}$-atom parameters constrained
$R=0.029$
$w=1 / \sigma^{2}\left(F_{o}\right)$
$w R=0.028$
$(\Delta / \sigma)_{\max }<0.001$
$S=1.26$
$\Delta \rho_{\max }=1.40 \mathrm{e}_{\AA^{-3}}$
1005 reflections
75 parameters
Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Pb}-\mathrm{S} 1$	2.860 (2)	P1-O1	1.585 (6)
$\mathrm{Pb}-\mathrm{S} 2$	3.145 (2)	P1-O2	1.579 (7)
$\mathrm{Pb}-\mathrm{S}^{2}{ }^{\text {i }}$	3.033 (2)	O1-C1	1.463 (9)
S1-P1	1.976 (3)	$\mathrm{O} 2-\mathrm{C} 2$	1.452 (11)
S2-P1	1.987 (3)		
$\mathrm{S} 1-\mathrm{Pb}-\mathrm{S} 1^{\mathrm{ii}}$	76.0 (1)	$\mathrm{S} 2-\mathrm{Pb}-\mathrm{S} 2^{\text {i }}$	80.14 (7)
$\mathrm{S} 1-\mathrm{Pb}-\mathrm{S} 2$	68.04 (6)	$\mathrm{S} 2-\mathrm{Pb}-\mathrm{S} 2{ }^{\text {ii }}$	148.33 (7)
$\mathrm{S} 1-\mathrm{Pb}-\mathrm{S} 2^{\text {i }}$	91.28 (6)	$\mathrm{S} 2-\mathrm{Pb}-\mathrm{S} 2^{\text {iii }}$	97.75 (6)
$\mathrm{S} 1-\mathrm{Pb}-\mathrm{S} 2^{\text {iii }}$	94.75 (7)	$\mathrm{S} 2{ }^{\mathrm{i}}-\mathrm{Pb}-\mathrm{S} 2{ }^{\text {iii }}$	172.34 (7)
$\mathrm{S} 1-\mathrm{Pb}-\mathrm{S} 2^{\text {ii }}$	143.50 (6)		

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1-x, y, \frac{1}{2}-z$; (iii) $x,-y, z-\frac{1}{2}$.

Table 2
Contact distances (\AA).

$\mathrm{Pb} \cdots \mathrm{O}^{\mathrm{i}}$	$3.012(6)$	$\mathrm{S} 2 \cdots \mathrm{O} 1^{\mathrm{iii}}$	$3.336(6)$
$\mathrm{S} 1 \cdots 1^{\text {iv }}$	$3.448(9)$		

Symmetry codes: (i) $1-x,-y, 1-z$; (iii) $x,-y, z-\frac{1}{2}$; (iv) $x, 1-y, z-\frac{1}{2}$.
H atoms were placed in geometrically calculated positions $(\mathrm{C}-\mathrm{H}$ $=0.95 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CrystalStructure; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Ito, T. (1972). Acta Cryst. B28, 1034-1040.
Ito, T. (1982). Acta Cryst. A38, 869-870.
Ito, T. (2003). Acta Cryst. E59, m892-m893.
Ito, T. (2004). Acta Cryst. E60, m783-m784.
Lawton, S. L. \& Kokotailo, G. (1972). Inorg. Chem. 11, 363-368.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku/MSC (2002). CrystalStructure. Version. 3.00. Rigaku/MSC, 9009 New Trails Drive The Woodlands, TX 77381-5209, USA.

[^0]: D_{m} measured by flotation in zinc iodide (aq)
 Mo $\mathrm{K} \alpha$ radiation
 Cell parameters from 25
 reflections
 $\theta=15.9-16.5^{\circ}$
 $\mu=11.97 \mathrm{~mm}^{-1}$
 $T=296 \mathrm{~K}$
 Prism, colourless
 $0.16 \times 0.12 \times 0.12 \mathrm{~mm}$
 $R_{\text {int }}=0.007$
 $\theta_{\text {max }}=27.5^{\circ}$
 $h=0 \rightarrow 23$
 $k=0 \rightarrow 11$
 $l=-11 \rightarrow 0$
 3 standard reflections every 150 reflections intensity decay: 0.2%

